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Abstract

The stability of a simple equilibrium periodic system for the interstellar
gas - magnetic field described in an earlier paper (Lerche, 1966) is discussed.
It is demonstrated that the system is unstable with a growth time of the order of the
free-fall time. The instability is of such a nature that the material tends to break
up into clumps. In view of the fact that the periodic system is formed from a uniform
atmosphere in a time of the same order, this calculation demonstrates that, at best,
the periodic system can represent a transition phase of the interstellar gas - magnetic
field system. It also shows that the formation of clumps of gas from a uniform

atmosphere progresses in a time less than, or comparable to, the free=fall time.



. Introduction

It has been demonstrated (Parker, 1966) that the interstellar gas,
whose weight holds down the large scale galactic magnetic field threaded through
the gas, is unstable to a Rayleigh-Taylor type instability of such a nature that the
gas tends to accumulate in 'pockets' in the low regions of magnetic field. The
gravity is provided largely by the galactic star system which takes little or no part
in the motion, In fact, including self-gravity of the interstellar gas would only
increase the rate of gas accumulation, The instability proceeds wiijérowfh time
of the order of the free=fall time provided that the intergalactic medium exerts
pressures which are negligible compared to the cosmic ray gas pressure and the
interstellar magnetic field pressure in the galaxy (about 10-]2 dynes/cmz).

While we have been unable to follow in detail the break-up process
of the interstellar gas it has been demonstrated elsewhere (Lerche, 1966) that in
at least one particular case it is energetically more favorable for the interstellar
gas - magnetic field system to break up into a periodic array of current sheets than
to remain as a uniform atmosphere. In particular we showed that by so breaking up
there would be a reduction of some 6 percent in the total energy of the system. In
the equilibrium current sheet system we envisage an infinite array of sheets as
depicted in Figure 1, The current distribution is the same on all sheets and, in
equilibrium, the currents point in the Z-direction, but are independent of Z .
Thus the equilibrium state is rigorously two dimensional in the x~y plane. Further,
the material density on each sheet is held against the galactic gravity by the

J X ,@ force on each sheet and}since the galactic gravitational acceleration
A,
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changes sign across the galactic plane ( 4=0 ))we choose Jl9)= - (—‘3)
For a particular variation of J(‘a) it was demonstrated that it was possible
to set up such an equilibrium state. It was also possible to transform the periodic
system back into a uniform atmosphere and to demonstrate that the uniform state
had a greater total energy than the periodic array. Thus the infinite array of
discrefe.ske‘efsy of gas is favored, as far as energy is concerned, over the uniform
atmosphere.

However in the earlier paper (Lerche, 1966), hereinafter referred to
as A, no account of the stability of the periodic current sheet system was given.
It is the purpose of the present paper to demonstrate that the sheet system is an
unstable equilibrium with an e~folding time of the order of the free-fall time. Since
the original atmosphere is also unstable with an e-folding time of the same order

/

the current sheet system is, at best, a transition phase of the interstellar gas -

‘magnetic field system,

We do not intend to consider a general perturbation in this paper but
will restrict ourselves to two particular types of perturbation. The first we call
a 'bending' mode since it affects both the position and direction of the currents on
each sheet. The second we call a 'displacement' mode since it affects only the
position of the currents on each sheet but not their direction.

Further we assume that current sheet = magnetic field system is embedded
in a tenuous, conducting plasma in order that the hydromagnetic equations are

applicable to this problem. The plasma exerts pressures and produces magnetic fields

which are negligible in comparison to the stresses, fields, pressure and weight of
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the material current sheets. We also assume that any Alfvén waves which are
b generated can travel at a much higher velocity than the response speed of the material
on the current sheets. Accordingly we can use the Biot - Savart law to calculate
the magnetic field.
Finally we state that the calculation is performed for cold interstellar
gas so that the current sheets are infinitely thin. This restriction is imposed in

order that the algebra remain tractable.

Il. The Bending Mode

a
With gravity in the y=direction we conside;(perfurbafi’on of infinitesimal

amplitude E in the x-z plane of such a nature that the nth current sheet

takes up the position

¥(y)t
Xx=2na + (_,)n Es'w\\?% e ?)) n=0tl

where U ( ‘3) is a function to be determined and E is a small constant dis-

placement,
Further, since we are neglecting displacement currenfs)it follows that
- —
VxH(x,t)= 4rc J(x,t) , 2)
where J , the current density, is given by

o0

) J (x,t) = J'(?)Z S § [x-2na- 1 sike ewt] 3)

N=-00 J
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A
and the unit vector Sh is given by
2 ¥
S, = 7+ Q(—')ﬁk’gwsk}e(b)t @
VL1+ §* Fachz XMt ] '
equation

The soluhon fol(2) can then be written

CH(K ) - Z Ax' ' ol M’)S[" 2na- (-1)"Espmka’ &89 ‘)tj
. /[Hg Ko ‘lzz’e”(‘ﬁ')f]

[O=x) s 1y- Y ) e (- z)] X{ x(«a 3)+t,d,[x-x-(-1)h§k(z- ~2')askz’ B’/a')tj

- [} (‘
+ RS () (9-9')crs k3! exa)t} (5)

Now the material density on, say, the rth current sheet is

G (na2t) = oty S[x-2ra= (-1 S sinka " WF] ®

Q?’uaﬁm
The acceleration in terms of the unknown X(g) is readily computed from[(1),

so that from Newton's equation of motion the associated force must be
- - A N 2 . X(&‘))t
M,_Y‘ X O.{?) (—’) g X(‘J) Sw.ki‘ e g[X—ZYa-g(-I)Y\S;AkZ. eY(bﬂi]
2
+rO(s) . @
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However, the force follows from the magnetic field and gravity as
A A, A
= Lotigmd e Sox B 0]

8 [X- 2ra- (-1)" S smkz e,X(UH-J

D) (8)
so that equcfing the two expressions for MF 5 the momentum equation is
sly) S (- volt,,
4 D" ¥(9) smkz o O[E)
, 090905+ oy S xH (x t)
| Y )

¥yt

. - '
where  x = 2pa + (=) §smbz e
For simplicity, and without loss of generality, we choose v = () when

we have

Sal9) ¥u) surkz e?f(”)f + O(EZ)

= ‘0(3)9,(9)9\ +J('3)C" [£+% kaska GX(%))&JXA}:}(E)%) (10)

eiuafm Xz g5 ‘\’V\k'} @x{hﬁ_
Now return to|(5), \A/lfh X = '§ Sm k2 68/3){' we see that

C H X t) Z' J /if‘ JI(‘;}')

\ n=- S —
” W{[Q“Cf‘g(sffn\ez-(’ Z ) sk X(Wf)]lf- (‘\7"3')7"4-(2—1')7:}%
- X ”: (374 +G{-2na $lsike ?C

e ke k-2l szt )

f-z}zg(')(tglg)ka% eY(3')+J + O(“g) (1)
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Upon expanding((11) in an ascending series in the infinitesimal amplitude E and

retaining terms only up to order E we obtain

/__/ A 00 o) [ 4]
CM .—.—xZ ]%IJO‘EI J(Bl)('ﬁ“a')
o0 %V‘="2 T Y-y [4-nzal +'(‘0"2')z*‘(1"2‘)1_]3/2'
F 3 Z dg'j dz! Jly)
n=-w —w L, Lq'hqui-(‘ﬂ—la')L.l. (2._.21)LJ3/2
{‘3 Lsinka X0l VE sl ol kiz-2) eka')]
22 L0k ly-y)ask ! T0F G 14nae] M908 ke - (¢:>‘“~e”‘dl)€’“kzgj 12
L4H"QL t (‘()—la')l +(2-2')* ] «(12)

Ggua'hm egucrtion
Use of](12) ink(]O) and retaining only terms of order § or less leads to

R 6(9) ¥)* S sim b e¥OIE - -a(y) g y) 9

-4 025(3)5)1 J IFUICE S Erk
CZ n=-w j_, L4V\1C(L+(t0—(9n)2—j

A > % o4

X

c2 ne- VA .
ol -od ” L4h2a2+((ﬂ_‘al)l— +/‘Azj.5/2 )\

(CO'S}?/H +/MSIMP€/M> - |2n2q2 LGX(%)E(-I)V‘M}; ,ewbl)tj‘}
[4w2a> f(b-‘a')zylj

i @‘6(‘3)'{: (-1 )h ex((al){-

2
(13)

where /A = 21— z
Now we have already chosen d7(y) and J‘(lj) (but see A)

in order that



w) (9-4') day!
’ Lﬂ-hzd +(y- 19')7_]

= ‘(’—(‘0)3(‘6)) (14)

sothat ecLua‘)',M (13) reduces to ® Q

)t .
e (y)¥ly)’e 9 = - J(‘az)Z Apa J(9")
Tl » [4naz Hyy)) 1'-/,‘1_]3/7.

| X
Bly)t o

e - (—I)V‘ ¥ V) |
T i) L )
4nta? iy YH* 4 2] .

/u
(15)

iua‘f‘ow
For times, T , such that ¥ << j_we see fhaf/((lS) becomes

(y)¥(v)* o~ _ ¢ o ,
PR J‘—-”-%Z J“?'jf‘z« (')
) [4”16‘2”‘0%')“'/‘2]‘/2

{ - (—l)h(coxk/«ﬁe/ashk/g [2n2a2 LI~ (~) %k/“] j
[4n2a? ¢ +(y- 3)147«1]

X

(16)

It can be shown (Gradshteyn and Ryzhik, 1965) that

J \MLM/“\ Qk K HH) (17a)
- (/4"24'}‘2)3/1 IM D
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j hpsislp oK (kIN)

[pe i )
wd

(17b)

and

J mk/w/u = 2RLK ki) +2K (k)]
o (P74 N % 3N RN o

@/llm'*: Mg N k’ ,«.mﬂon

Use of|(17) in{(16) leads to

' N N I - g’mzaz
o(y)y® =~ 2y(4) 'ty [“‘1’
~ Z !“‘2 19| .~

é,,-
A —o) >\

o kK (RN N R (RN e BN K (R))
*—l—l)hgn’-azk >\—3 Kl (k\) ]

(%)
J
wheré
A = 4n*at+(4-9)* and A>0.
In view of the fact that
- = = T coth [W(‘O':Z'JJ (19a)
ne [‘M aZH\g-tj’)zJ .?a(\j-‘ju) 24 D



and
% |
2' = Zf j [l
ntox _ e A COT
n:_wH a* +(y-y')*] me_wa R ] (19b)
+ T (9-9) eysech? m; Y
Qzuqfl'on -?C( [ ]j

we see thau(IS) can be written

2 ‘ 0
cly)¥ = ‘QJ{B)J d'a'd'(‘a‘){ 0 mctleﬂ'(” J))J IS K [y [J)

v “at <
~k K, (}<'U“U’]>_ _k gy Z'/ % }\( (/\/\)
BT o
QT O L= 26ty |
ne. A A* 2

7Y
(20)
where the primes on the sums over n denote the fact that the term n =0 is to be

omitted.

Use o)( F-) €na lo‘és. us T+ write

) = v on
2% gl b | >
il (SW‘ ’W%al)
and
6—('0) — TT‘\/Z JOZ- . (22)

9(M1) ¢ sinh /n%a}
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Thus we have

¥== -gliv) //(smw)

Qa I\/l {Co’Secl'l (\/.\/)

o ‘/ /{smHV‘l )
- K, (kl\/-y'}) 1 K (vcl\/-v'/)
V-v]
vv')Z (-8 Ky L (w2 77727

Lh"i— (y-\/ )LJ

“"Z/“’ Lo 77 ] [1= 20-y)* }
(23)

X
n=-n F-#(‘/ V') ] W
p)

where
AT =ak , Qa\/= TY and Qq\//= 'TZ’I‘

e uation
The author has been unable to perform the sums in)(23) exactly. However

some progress can be made in one case.
We suppose that the wave number is chosen so that [ >>1

In this case

Ko (e IN=y'1) 2 (v-v) Z 0" K, {e/Lnte 1y il

Nz -o Ln Fly- \//)1]

2 1. O (! eQ“)

and h " v
Kl(k'\/‘\/l') : \/ \/'Z (1) K\/[ +(/ /)Jj L"\/L}

\/[n‘% (v- \/a) .] [,,,14,(\/_\/,)1]

2 10 (% €~2‘6)
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Thus to a good approximation we see that{(23) can be written

Xz-"‘- ‘9_1 ‘/(S‘.ML\’\/,)JW J\/' \/I

: X
2alV| —a (smhIvY) 1Y)
[ersech™ 1Y-y') =K, (kly-1]) =i K| { (e IY=y']) J )
Kly-y) o
equation,

If we now set y \/4-1; we see thai’k(24) becomes

Xl: 3_/ \/(SMM\/I)] [ y4‘f’ VA

2alY] Vel b TvepTy /y‘PI\/(sanV‘FU X

Leneklp 02K, lep) -k lep)]

(25)

For \\/I >>1 it is clear that only the range Pfs “Y) contributes
a significant amount to the integral since when F 2, I\/ | and l\/,>7i

the factor KP>> P and then the factor ¢¢sec L\Z.F - kK, (KP)-;(F"K'(,?)

)

reduces the integral to an insignificant amount.

Thus for |\/ l))l we have

¥ - I
C?J Slnkz.}) kK(kP) KK(;:F)_/Mf (26)

0]

and
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T K ey - K s )
jo [_ Siv\l\ZF “ KF) K___I__%‘_f_)_j UIF
= [;"’(Gﬁ'\}) + K K| (KF)‘/F%W: --1_

pP=o

Thus

~ 9/ (27)

P

provided ak>>2‘ﬁ- and | Y ,TI' >> 2 a .,
| For MlT'(( 2 but g ;’>‘>>2T- it may appear at first sight
Gi,ua‘fcovy

that the dominant contribution to the integral in|(25) is from the range F ~ I\/I

However in this range

_lz - X K (kF) ( E)
SMLP ?

may or may not be small. Thus to a good approximation we can write

(34, Leath M =K ey

(28)

It is a simple matter to show that wth Y/ K, (l( ] ) is a positive definite
function for all ;/olues of '\/l . For X I\I‘<< 1 but K« >‘/‘j_ and

e W?'f:an

'\/l<<i /( (28) can be written

YN %J"{}L LW(Q) : (29)

,F‘Ii
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For I\” ))i but l\/’ <<1 and K >>1 we can write

o) )

Yoo J (30)

mly| °

We now have the set of results presented in table |. We see that the
e-folding time for the instability is of the order of the free-fall time just as the
uniform atmosphere was unstable with a similar e-folding time. However there is
one fundamental difference. In the uniform atmosphere case the instability tries to
move the material into the low regions of field whereas the bending mode tries
to split the current sheets in a direction normal to gravity. This situation is depicted
schematically in Figure 2. The hatched regions are where we expect the material
from the sheets to accumulate due solely to the action of the bending mode.

We do not contend that the short wavelength (C{ k>>2'|1‘)
bending mode is the most unstable mode. However it demonstrates that even if no
other wavelength exists for which the sheets are unstable this mode alone is suffi-
cient to guarantee instability with a period of the order of the free fall time. Since
this is also the period of instability of the uniform atmosphere (Parker, 1966) it
raises the question: Can sheets be formed from a uniform atmosphere ?

Before considering this question we shall first demonstrate that the
current sheet system is also unstable to the displacement mode which tends to split
the \3 pointing 'columns' of material into a discrete series of clumps on

each columnar track.
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I1l. The Displacement Mode

Cons'f&nf

L 4
We conudenxperturbcfion offinfinitesimal amplitude § in the
x=-y plane of such a nature that the nth current sheet takes up the position

X=2na + (~1) Eg?(%)e S, nEotl b2

. (31)

where §(\3> " is a function which has yet to be specified but is taken to be
independent of 2 . Further, since we are assuming that the Alfven waves

travel at a much faster speed than the response speed of the material sheefs)if follows that

ctl(y:\{):. E-(ﬁ/’“x“‘}i‘) oA 3x! (32)
]x,bll3 v J

where the current density, T(\( +) , is given by

J(x t) = gj(w Z 8 x=2na - (-1)'$d(y)e ﬂ @)

Ny

In this case we displace the currents on each sheet but leave their direction unaltered.
Computing the force exerted on the rth current sheet due to the

displacement in an analagous manner to that of é I , and expanding to

order E) leads 15 » o® o0
() Dly)¥ = J‘_@Z dy' | 2’ jt) [809) - 078l

z 2
C e e L [4—»’124 ‘*'(9"3/)1*'2/2_73/2

{_' F___Maat f , (34)

[ 4-nzq= *(‘j'ﬁl)L‘* 3/2]

where we have chosen to consider the forces on the vy = O sheet for simplicity.
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2’ we see fhafl (34) becomes

¥ = 2
T8 = 2 S Jdg jly) [3) 1T ey] x
h=-=00%-¢
| 2(y-y')"
| - ),
{ Lantas +(g-y1)? ] L4ntas +(y-yy= ]2 j

Now it is well known that

-]

2.

n=-w

| Tethby)
(4 3%) ) ’

Q>\Z. = I[COTL(WX>+T\(OS?CL12(W>\>j
(n+)2)* A <

D 2 T k()
(n2+32) A )
2, \h
aN ()" . T cosech (MN) [ 14 A eoth (ﬂ\)j
(n? F>\? ) ¢ >\
cquations cquation,

Use ofi(36) enqbles/[(35) to be written

G_(%)@(O)Xl: leJ'(%) J;«a’ J(?') Mectxz[w)] X
- < ¢

Larc?

{_@(3')6081’1[_{%_‘2_')] - @-(Lajj

(35)

(36a)

(36b)

(36¢)

(36d)

(37)
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In the present situation we have yet to specify @ (Ej) . Asis
usual in a normal mode analysis we should now set ¥ = constant and look for
the solutions of the integral equation (37) for @-(a) and see what conditions
this imposes on the values of ¥ i.e. we should solve an integral equation
eigenvalue problem for - @(‘9) and X |

equation
Further it is clear by inspection of‘(37) that, in general, we have a

. . ' .
singular-point as *3 passes through \9 unless we treat the integral as a
. 7‘1’0*1/
principal value integral. In view of A we see fhau(37) should indeed be
€quationg eguation

interpreted as a principal value integral. Making use oi;((Z]) and (22) inA(37) we obtain

Xlg(‘ﬁ) = N9 % Jsiuh (7 y 2
TN P i o) ot

Lo 19241 Vb [T, |
L eosh (%ﬂ’—_(‘ﬁ*/ﬁ) -Tly) | . (38)

ugTion

Changing variables inj(38) through qu= TI‘O avd| Qa? =V

we obtain

\(gz@—(lj) = g)‘\_/_/(s\ml«\’\/l):f) O{P (?4'\/) ,
AT B s T Ry e

cosech’p [COSL\? Q(W-P) —@_(\/):J ‘ | (39)

ei}mfiow
. “Fhe author has so far been unable to solveA(39) exactly. However some

progress can be made in two extreme cases.

X
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YI»1,

In such a case, provided @(ﬁ) is reasonably well behaved, we have that

K" ~ ﬁ_ o(? ((QLP_O
<a ! Simlﬁl_?

9/a . (40)

Note that in this approximation anynon-zero, reasonably well behaved @ (‘:) >
leads to an unstable situation. However we obtain no knowledge of the way in which

the current sheets move except that the material moves off its equilibrium position.
by V)<<,

In this case we get a significant contribution to the integral only if
egualion

l"’ < ’\/l 4S can be seen by inspection oﬁ((39) and in this regime we have

XP(Y) = 9@—-(\/) ;Dj cmc# (sshp-1Ddp
1V

Thus
Z \
¥ =~ 5\) /] _ T4 19|
— = (41)
4a gaz
Note that in this case is not constant but is a function o
h h ¥ b f oy

GW'/’/MS
Despite this fact we feel that the results o£((40) and (41) suggest very strongly that

the current sheet system is unstable to the displacement mode with an e-folding time
of the order of the free-fall time.
The motion of the material off the current sheets due solely to the

displacement mode is depicted in Figure 8!.
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IV. Conclusion

We have shown that the equilibrium system of paper A is an unstable
situation with an e=folding time of the order of the free~fall time. Since the
uniform atmosphere forms material sheets in a time of the same order (Parker, 1966)

it is doubtful that the gas passes through the quasi-equilibrium current sheet state.

=  current sheets —>

Even though the sequence "uniform atmosphere
clumps" may not be the most rapid way for the material to break up into clumps,

it demonstrates that the formation of clumps of gas from a uniform atmosphere occurs
in a time less than, or of the order of, the free=fall time.

While the arguments presented here and in paper A have dealt
with a particular model of the interstellar gas ~ magnetic field system we believe
(but so far have been unable to prove) that their physical content is valid for a
much wider class of situation than the simple system we have used for illustrative
purposes,

We have done this stability calculation to demonstrate that the
interstellar gas, which holds down the magnetic field threading through it, cannot
give rise to an equilibrium state as depicted in paper A which can be considered
stable over a period of the order of 106 - ]07 years (the galactic free~fall time)
and further to show that discrete clumps of gas will form from a uniform atmosphere
in a period of the same order.
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TABLE |
y[<< 2a y|>> 2a
4k 9 g
|¥|>> ] =
2
| y]<< 4k -151!1!:— (8. ,) g
s

Caption:

Values of 72 for ak >> 27
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Captions:
Fig. 1. The equilibrium array of current sheets.
the

Fig.2, Motion of material oﬂXcurrenf sheets and into the hatched regions (columns

in the y direction) due to the unstable bending mode. We expect L Ka

&€
Fig. 3. Motion of material off jcurrent sheets and into the hatched regions due

solely to the displacement mode. We expect [ ,>\; Q.
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